This site uses cookies.
Some of these cookies are essential to the operation of the site,
while others help to improve your experience by providing insights into how the site is being used.
For more information, please see the ProZ.com privacy policy.
ENES; FR-ES Medicine & Humanities linguistic validation consultant and translator with more than 15 years of experience.
Account type
Freelance translator and/or interpreter, Verified site user
Data security
This person has a SecurePRO™ card. Because this person is not a ProZ.com Plus subscriber, to view his or her SecurePRO™ card you must be a ProZ.com Business member or Plus subscriber.
Access to Blue Board comments is restricted for non-members. Click the outsourcer name to view the Blue Board record and see options for gaining access to this information.
English to Spanish: Emotional Neural Systems General field: Science Detailed field: Medical (general)
Source text - English Sistemas neurales emocionales
Los circuitos críticos del sistema neural de la autoestimulación o de búsqueda se encuentran en el corredor lateral hipotalámico, y están bien marcados por la trayectoria de los sistemas dopamínicos del cerebro, especialmente los componentes mesolímbicos y mesocorticales que ascienden desde las neuronas dopamínicas A10, y son responsables de que el cortex frontal y el striatum ventral del cerebro de reptil procese la información apetitiva correctamente.
Si en lugar de entender este sistema en términos topológicos cerebrales lo hacemos en términos neuroquímicos, la emoción de la búsqueda puede ser caracterizada por un sistema dopamínico vinculado a las estimulaciones motoras neuronales, sistema que posiblemente es la exapción o reconversión funcional evolutiva de otros sistemas neuroquímicos más antiguos, los catecolamínicos, basados en la epinefrina, responsable de la activación metabólica, y norepinefrina, responsable de la activación sensorial, hasta la dopamina, responsable de la activación motora.
La frustración agresiva puede ser provocada con la estimulación eléctrica apropiada de un circuito que recorre desde las áreas agmidaloides mediales, hacia abajo, a través de la estria terminal, hasta alcanzar el hipotálamo medial y desde allí hacia localizaciones específicas del PAG del mesencéfalo, formando una estructura jerárquica cuya influencia va de abajo a arriba. A nivel neuroquímico, se ha comprobado que las sustancias que promueven la frustración agresiva son menos numerosas que aquellas que la reducen, encontrándose entre las primeras la sustancia P, el glutamato y la acetilcolina, si bien los más importantes neuromoduladores para esta emoción no han sido aún encontrados.
La topología del sistema neural del miedo en el cerebro mamífero incluye las zonas lateral y central de la amígdala, el hipotálamo medial y anterior, algunas zonas específicas del PAG, y el núcleo reticular del puente caudal. La amígdala es clave dentro de este sistema en los vertebrados, pues en ella se determinan los procesos que resultan en la valoración de la situación amenazante, así como se coordinan las respuestas conductuales a ella y las reacciones asociadas autónomas y endocrinas correspondientes. La neuroquímica del miedo es parcialmente conocida. Las tesis dominantes apuntan hacia el glutamato como el aminoácido que media el aprendizaje con miedo, y que genera la respuesta incondicionada del miedo, aunque también hay otros neuropéptidos que experimentalmente han probado su incremento del comportamiento miedoso.
En los mamíferos, el sistema neural que corresponde a la emoción sexual es diferente entre machos y hembras. Cada uno de ellos es el desarrollo de un sistema evolutivamente anterior que se encuentra en peces y reptiles, de cuyo componente neuroquímico, la vasotocina, se derivan, por cambio de un aminoácido, la vasopresina y la oxitocina de los mamíferos. La oxitocina, aunque se encuentra de manera más abundante en el cerebro femenino, también forma parte de la sexualidad masculina, tanto en la excitación como en la saciedad de esta. La arginina-vasopresina está presente en la fase de excitación sexual masculina aunque no en el orgasmo, que está controlado por la oxitocina, mientras que en las hembras es la oxitocina la substancia que regula el funcionamiento del sistema neural tanto en el cortejo como en la cópula. Aunque en los mamíferos los circuitos neurales masculinos y femeninos son diferentes, comparten áreas comunes que son receptivas tanto a andrógenos como a estrógenos. Los machos tienen una mayor área preóptica, la cual juega un papel fundamental en su sexualidad, mientras que en las hembras es el hipotálamo ventromedial la zona equivalente en cuanto a respuesta sexual, si bien tanto una como otra se encuentran activas en menor medida en el otro sexo, así como el área periacueductal y la espina dorsal. Aunque los circuitos cerebrales de oxitocina y vasopresina son las principales sustancias que determinan las emociones sexuales, no son sino dos de los componentes neuroquímicos de una lista más larga que se está comenzando a elaborar en la neurociencia afectiva, en la que habría que añadir también la hormona luteinizante y la acetilcolina.
En Muñoz, Óscar E., Mitopoética. La construcción simbólica de la identidad humana. Mandala Ediciones. Madrid. 2013. p.p. 661-663.
Translation - Spanish Emotional Neural Systems
The main circuits of the self-stimulation or seeking neural system are found in the lateral hypothalamic corridor, and are well marked by the trajectory of the brain’s dopamine systems, especially the mesolimbic and mesocortical components which ascend from the A10 dopamine neurons, and are responsible for the correct processing of appetitive information in the frontal cortex and ventral striatum of the reptile’s brain.
If instead of understanding this system in terms of brain topology we do so in neurochemical terms, the emotion of seeking can be characterized by a dopamine system linked to motor neuronal stimulations, a system which is probably the exaptation or evolutionary functional reconversion of older neurochemical systems, the catecholamine system, based on epinephrine, responsible for metabolic activation, and the norepinephrine system, responsible for sensory activation, including dopamine, responsible for motor activation.
Aggressive frustration can be produced with the appropriate electrical stimulation on a circuit that runs from the medial amigdaloid areas, downwards, through the stria terminalis, until it reaches the medial hypothalamus and from there towards specific places of the PAG of the mesencephalon, forming a hierarchical structure whose influence goes bottom-up. At a neurochemical level, it has been verified that the substances which promote aggressive frustration are less numerous than those that reduce it, being found among the former substance P, glutamate and acetylcholine, although the most important neuromodulators for this emotion have not yet been found.
The mammalian brain topology of the neural system of fear includes the lateral and central areas of the amygdala, the medial and anterior hypothalamus, some specific areas of the PAG, and the caudal pontine reticular nucleus. The amygdala is key within this system in vertebrates, for in it are determined the processes that result in the valuation of a threatening situation, as well as the coordination of the behavioral responses toward it and the corresponding autonomous and endocrine associated reactions. The neurochemistry of fear is partially known. The dominant thesis aims towards glutamate as the amino acid that mediates learning through fear, and which generates fear’s unconditioned response, although there are other neuropeptides that experimentally have proven their influence on the increase of fearful behavior.
In mammals, the neural system that corresponds to the sexual emotion is different between males and females. Each one is the development of a former evolutionary system which is found in fish and reptiles, from whose neurochemical component, vasotocin, are derived -due a change of an amino acid- mammalian vasopressin and oxytocin. Oxytocin, although found more abundantly in the feminine brain, also plays a role in male sexuality, both in sexual arousal and sexual satiety. Arginine-vasopressin is present during the male’s sexual arousal phase although not during orgasm, which is controlled by oxytocin, whereas in females, it is oxytocin the substance that regulates the functioning of this neural system both in courting and copulation. Even though in mammals the male and female neural circuits are different, they share common areas which are receptive both to androgens and estrogens. Males have a larger preoptic area, which plays a fundamental role in their sexuality, whereas in females the ventromedial hypothalamus is the equivalent area of sexual response, nevertheless, both are more or less active in the opposite sex, as well as the periaqueductal area and the spinal cord. Even though oxytocin and vasopressin brain circuits are the main substances that determine sexual emotions, these are only two neurochemical components of a longer list which is beginning to be elaborated in affective neuroscience, to which it would have to be added as well the luteinizing hormone (LH) and acetylcholine.
More
Less
Translation education
Master's degree - UIMP
Experience
Years of experience: 20. Registered at ProZ.com: Sep 2014.
Spanish (Universidad Nacional de Educación a distancia, verified) English to Spanish (Universidad Nacional de Educación a distancia, verified)
Memberships
Translators Without Borders (TWB), Sociedad General de Autores y Editores (SGAE), CEDRO
Software
Adobe Acrobat, Microsoft Excel, Microsoft Office Pro, Microsoft Word, OmegaT, SDL TRADOS 2021, Powerpoint, Trados Studio, Wordfast, XTRF Translation Management System
Get help on technical issues / improve my technical skills
Learn more about additional services I can provide my clients
Learn more about the business side of freelancing
Stay up to date on what is happening in the language industry
Improve my productivity
Bio
Linguistic
Validation & Translation services. Focused areas of expertise: Medical
Sciences and Humanities. Included assets: efficiency, reliability, punctual
deadline compliance, with a commitment for excellence and clarity.
Working for
CROs and translation agencies specialized in medical translations. Linguistic
validation of Medical Questionnaires, Clinical Outcomes Assessments (COA), and
preparation and migration translations for use on electronic platforms (eCOA),
Patient-Reported Outcomes (PROs), Clinician-Reported Outcomes (ClinROs), Observer-Reported Outcomes (ObsROs) and Performance Outcomes (PerfOs).
Clinical
trials, adverse events reports, Clinical guidelines, IMPDs, Pharma reports and
products, Drug and treatment surveys, Medical conferences, Medical training
brochures, Clinical devices and manuals, Scientific medical articles.
Security
protocols for COVID-19; Security protocols for several companies.
Medical
products translations for pharmaceutical companies and medical technology.
Academic
and scientific publications in: Medicine, Social Sciences, History,
Archaeology, Literature and Philosophy.
This user has earned KudoZ points by helping other translators with PRO-level terms. Click point total(s) to see term translations provided.