This site uses cookies.
Some of these cookies are essential to the operation of the site,
while others help to improve your experience by providing insights into how the site is being used.
For more information, please see the ProZ.com privacy policy.
Freelance translator and/or interpreter, Verified site user
Data security
This person has a SecurePRO™ card. Because this person is not a ProZ.com Plus subscriber, to view his or her SecurePRO™ card you must be a ProZ.com Business member or Plus subscriber.
Affiliations
This person is not affiliated with any business or Blue Board record at ProZ.com.
Open to considering volunteer work for registered non-profit organizations
Rates
Portfolio
Sample translations submitted: 1
English to Portuguese: The Critical Importance of Retrieval for Learning
Source text - English The Critical Importance
of Retrieval for Learning
Jeffrey D. Karpicke1* and Henry L. Roediger III2
Learning is often considered complete when a student can produce the correct answer to a
question. In our research, students in one condition learned foreign language vocabulary words in
the standard paradigm of repeated study-test trials. In three other conditions, once a student had
correctly produced the vocabulary item, it was repeatedly studied but dropped from further testing,
repeatedly tested but dropped from further study, or dropped from both study and test. Repeated
studying after learning had no effect on delayed recall, but repeated testing produced a large
positive effect. In addition, students’ predictions of their performance were uncorrelated with
actual performance. The results demonstrate the critical role of retrieval practice in consolidating
learning and show that even university students seem unaware of this fact.
Ever since the pioneering work of Ebbinghaus
(1), scientists have generally studied human
learning and memory by presenting
people with information to be learned in a study
period and testing them on it in a test period to
see what they retained. When this procedure occurs
over many trials, an exponential learning
curve is produced. The standard assumption in
nearly all research is that learning occurs while
people study and encode material. Therefore, additional
study should increase learning. Retrieving
information on a test, however, is sometimes
considered a relatively neutral event that measures
the learning that occurred during study but
does not by itself produce learning. Over the
years, researchers have occasionally argued that
learning can occur during testing (2–6). However,
the assumptions that repeated studying promotes
learning and that testing represents a neutral event
that merely measures learning still permeate contemporary
memory research as well as contemporary
educational practice, where tests are also
considered purely as assessments of knowledge.
Our goal in the present research was to examine
these long-standing assumptions regarding
the effects of repeated studying and repeated
testing on learning. Specifically, once information
can be recalled from memory, what are the
effects of repeated encoding (during study trials)
or repeated retrieval (during test trials) on learning
and long-term retention, assessed after a
week delay? A second purpose of this research
was to examine students’ assessments of their
own learning. After learning a set of materials
under repeated study or repeated test conditions,
we asked students to predict their future recall
on the week-delayed final test. Our question
was, would students show any insight into their
own learning?
A final purpose of the experiment was to
address another venerable issue in learning and
memory, concerning the relation between the
speed with which something is learned and the
rate at which it is forgotten. Is speed of learning
correlated with long-term retention, and if so, is
the correlation positive (processes that promote
fast learning also slow forgetting and promote
good retention) or negative (quick learning may
be superficial and produce rapid forgetting)? Early
research led to the conclusion that quick learning
reduced the rate of forgetting and improved
long-term retention (7), but later critics argued
that, when forgetting is assessed more properly
than in the early studies, no differences exist between
forgetting rates for fast and slow learning
conditions (8, 9). By any account, conditions that
exhibit equivalent learning curves should produce
equivalent retention after a delay (9).
Using foreign language vocabulary word pairs,
we examined the contributions of repeated study
and repeated testing to learning by comparing a
standard learning condition to three dropout conditions.
The standard method of measuring learning,
used since Ebbinghaus’s research (1), involves
presenting subjects with information in a study
period, then testing them on it in a test period,
then presenting it again, testing on it again, and so
on. The dropout learning conditions of the present
experiment differed from the standard learning
condition in that, once an item was successfully
recalled once on a test, it was either (i) dropped
from study periods but still tested in one condition,
(ii) dropped from test periods but still repeatedly
studied in a second condition, or (iii)
dropped altogether from both study and test periods
in a third condition (Table 1).
Surprisingly, standard learning conditions
and dropout conditions have seldom been compared
in memory research, despite their critical
importance to theories of learning and their practical
importance to students (in using flash cards
and other study methods). Dropout conditions
were originally developed to remedy methodological
problems that arise from repeated practice
in the standard learning condition (10), but they
can also be used to examine the effect of repeated
practice in its own right, as we did in the
present experiment. If learning happens exclusively
during study periods and if tests are neutral
assessments, then additional study trials should
have a strong positive effect on learning, whereas
additional test trials should produce no effect.
Further, if repeated study or test practice after an
item has been learned does indeed benefit longterm
retention, this would contradict the conventional
wisdom that students should drop material
that they have learned from further practice in
order to focus their effort on material they have
not yet learned. Dropping learned facts may create
the same long-term retention as occurs in standard
conditions but in a shorter amount of time,
or it may improve learning by allowing students
to focus on items they have not yet recalled.
This strategy is implicitly endorsed by contemporary
theories of study-time allocation (11, 12)
and is explicitly encouraged in many popular
study guides (13).
1Department of Psychological Sciences, Purdue University,
West Lafayette, IN 47907, USA. 2Department of Psychology,
Washington University in St. Louis, St. Louis, MO
63130, USA.
*To whom correspondence should be addressed. E-mail: [email protected]
Table 1. Conditions used in the experiment, average number of trials within each study or test
period, and total number of trials in the learning phase in each condition. SN indicates that only
vocabulary pairs not recalled in the previous test period were studied in the current study period. TN
indicates that only pairs not recalled in the previous test period were tested in the current test
period. Students in all conditions performed a 30-s distracter task that involved verifying multiplication
problems after each study period.
Condition
Study (S) or test (T) period and number of trials per period Total
number
of trials 1 2 3 4 5 6 7 8
ST S T S T S T S T
40 40 40 40 40 40 40 40 320
SNT S T SN T SN T SN T
40 40 26.8 40 8.0 40 2.0 40 236.8
STN S T S TN S TN S TN
40 40 40 27.9 40 11.8 40 3.3 243.0
SNTN S T SN TN SN TN SN TN
40 40 27.1 27.1 8.8 8.8 1.5 1.5 154.8
966 15 FEBRUARY 2008 VOL 319 SCIENCE www.sciencemag.org
REPORTS
Downloaded from www.sciencemag.org on April 17, 2008
In the experiment, we had college students
learn a list of foreign language vocabulary word
pairs and manipulated whether pairs remained in
the list (and were repeatedly practiced) or were
dropped after the first time they were recalled,
as shown in Table 1. All students began by studying
a list of 40 Swahili-English word pairs (e.g.,
mashua-boat) in a study period and then testing
over the entire list in a test period (e.g., mashua-?).
All conditions were treated the same in the initial
study and test periods. Once a word pair was
recalled correctly, it was treated differently in the
four conditions. In the standard condition, subjects
studied and were tested over the entire list in
each study and test period (denoted ST). In a
second condition, once a pair was recalled, it was
dropped from further study but tested in each subsequent
test period (denoted SNT, where SN indicates
that only nonrecalled pairs were restudied).
In a third condition, recalled pairs were dropped
from further testing but studied in each subsequent
study period (denoted STN, where TN indicates
that only nonrecalled pairs were kept in the list
during test periods). In a fourth condition, recalled
pairs were dropped entirely from both study and
test periods (SNTN). The final condition represents
what conventional wisdom and many educators
instruct students to do: Study something
until it is learned (i.e., can be recalled) and then
drop it from further practice.
At the end of the learning phase, students in
all four conditions were asked to predict how
many of the 40 pairs they would recall on a final
test in 1 week. They were then dismissed and
returned for the final test a week later. Of key
importance were the effects of the four learning
conditions on the speed with which the vocabulary
words were learned, on students’ predictions of
their future performance, and on long-term retention
assessed after a week delay (14).
Figure 1 shows the cumulative proportion of
word pairs recalled during the learning phase,
which gives credit the first time a student recalled
a pair. We also analyzed traditional learning
curves (the proportion of the total list recalled
in each test period) for the two conditions that
required recall of the entire list (ST and SNT),
and the results by the two measurement methods
were identical. Thus, we restrict our discussion
to the cumulative learning curves on
which all four conditions can be compared.
Figure 1 shows that performance was virtually
perfect by the end of learning (i.e., all 40 English
target words were recalled by nearly all subjects).
More importantly, there were no differences
in the learning curves of the four conditions.
Given the similarity of acquisition performance,
it is not too surprising that students in the
four conditions did not differ in their aggregate
judgments of learning (their predictions of their
future performance). On average, the students in
all conditions predicted they would recall about
50% of the pairs in 1 week. The mean number of
words predicted to be recalled in each condition
were as follows: ST = 20.8, SNT = 20.4, STN =
22.0, and SNTN = 20.3. An analysis of variance did
not reveal significant differences among the
conditions (F < 1).
Although students’ cumulative learning performance
was equivalent in the four conditions
and predicted final recall was also equivalent,
actual recall on the final delayed test differed
widely across conditions, as shown in Fig. 2.
The results show that testing (and not studying)
is the critical factor for promoting long-term recall.
In fact, repeated study after one successful
recall did not produce any measurable learning
a week later. In the learning conditions that required
repeated retrieval practice (ST and SNT),
students correctly recalled about 80% of the
pairs on the final test. In the other conditions in
which items were dropped from repeated testing
(STN and SNTN), students recalled just
36% and 33% of the pairs. It is worth emphasizing
that, despite the fact that students
repeatedly studied all of the word pairs in every
study period in the STN condition, their longterm
recall was much worse than students who
were repeatedly tested on the entire list. Combining
the two conditions that involved repeated
testing (ST and SNT) and combining the two
conditions that involved dropping items from
testing after they were recalled once (STN and
SNTN), repeated retrieval increased final recall
by 4 standard deviations (d = 4.03). The distributions
of scores in these two groups did not
overlap: Final recall in the drop-from-testing
conditions ranged from 10% to 60%, whereas
final recall in the repeated test conditions ranged
from 63% to 95%. Whether students repeatedly
studied the entire set or whether they restudied
only pairs they had not yet recalled produced
virtually no effect on long-term retention. The
dramatic difference shown in Fig. 2 was caused
by whether or not the pairs were repeatedly tested.
Even though cumulative learning performance
was identical in the four conditions, the
total number of trials (study or test) in each condition
varied greatly. Table 1 shows the mean
number of trials in each study and test period
and the total number of trials in each condition.
The standard condition (ST) involved the most
trials (320) because all 40 items were presented
in each study and test period. The SNTN condition
involved the fewest trials (154.8, on average)
because the number of trials in each period
grew smaller as items were recalled and dropped
from further practice. The other two conditions
(SNT and STN) involved about the same number
of trials (236.8 and 243.0, respectively) but because
they differed in terms of whether items
were dropped from study or test periods, they
produced dramatically different effects on longterm
retention. In other words, about 80 more
study trials occurred in the STN condition than
in the SNTN condition, but this produced practically
no gain in retention. Likewise, about 80
more study trials occurred in the ST condition
than in the SNT condition, and this produced no
gain whatsoever in retention. However, when
about 80 more test trials occurred in the learning
phase (in the ST condition versus the STN condition,
and in the SNT condition versus the SNTN
condition), repeated retrieval practice led to greater
than 150% improvements in long-term retention.
The present research shows the powerful effect
of testing on learning: Repeated retrieval
practice enhanced long-term retention, whereas
repeated studying produced essentially no benefit.
Although educators and psychologists often
consider testing a neutral process that merely
assesses the contents of memory, practicing retrieval
during tests produces more learning than
additional encoding or study once an item has
been recalled (15–17). Dropout methods such as
the ones used in the present experiment have
seldom been used to investigate effects of repeated
practice in their own right, but comparison
of the dropout conditions to the repeated
practice conditions revealed dramatic effects of
retrieval practice on learning.
Fig. 1. Cumulative performance during the learning
phase.
Fig. 2. Proportion recalled on the final test 1 week
after learning. Error bars represent standard errors
of the mean.
www.sciencemag.org SCIENCE VOL 319 15 FEBRUARY 2008 967
REPORTS
Downloaded from www.sciencemag.org on April 17, 2008
The experiment also shows a striking absence
of any benefit of repeated studying once
an item could be recalled from memory. A basic
tenet of human learning and memory research is
that repetition of material improves its retention.
This is often true in standard learning situations,
yet our research demonstrates a situation that
stands in stark contrast to this principle. The
benefits of repetition for learning and long-term
retention clearly depend on the processes learners
engage in during repetition. Once information
can be recalled, repeated encoding in study trials
produced no benefit, whereas repeated retrieval
in test trials generated large benefits for longterm
retention. Further research is necessary to
generalize these findings to other materials. However,
the basic effects of testing on retention have
been shown with many kinds of materials (16),
so we have confidence that the present results
will generalize, too.
Our experiment also speaks to an old debate
in the science of memory, concerning the relation
between speed of learning and rate of forgetting
(7–9). Our study shows that the forgetting
rate for information is not necessarily determined
by speed of learning but, instead, is greatly
determined by the type of practice involved.
Even though the four conditions in the experiment
produced equivalent learning curves, repeated
recall slowed forgetting relative to
recalling each word pair just one time.
Importantly, students exhibited no awareness
of the mnemonic effects of retrieval practice, as
evidenced by the fact that they did not predict
they would recall more if they had repeatedly
recalled the list of vocabulary words than if they
only recalled each word one time. Indeed, questionnaires
asking students to report on the strategies
they use to study for exams in education
also indicate that practicing recall (or self-testing)
is a seldom-used strategy (18). If students do test
themselves while studying, they likely do it to
assess what they have or have not learned (19),
rather than to enhance their long-term retention
by practicing retrieval. In fact, the conventional
wisdom shared among students and educators is
that if information can be recalled from memory,
it has been learned and can be dropped
from further practice, so students can focus their
effort on other material. Research on students’
use of self-testing as a learning strategy shows
that students do tend to drop facts from further
practice once they can recall them (20). However,
the present research shows that the conventional
wisdom existing in education and expressed in
many study guides is wrong. Even after items
can be recalled from memory, eliminating those
items from repeated retrieval practice greatly reduces
long-term retention. Repeated retrieval induced
through testing (and not repeated encoding
during additional study) produces large positive
effects on long-term retention.
References and Notes
1. H. Ebbinghaus, Memory: A Contribution to Experimental
Psychology, H. A. Ruger, C. E. Bussenius, Transls. (Dover,
New York, 1964).
2. R. A. Bjork, in Information Processing and Cognition:
The Loyola Symposium, R. L. Solso, Ed. (Erlbaum,
Hillsdale, NJ, 1975), pp. 123–144.
3. M. Carrier, H. Pashler, Mem. Cognit. 20, 633 (1992).
4. A. I. Gates, Arch. Psychol. 6, 1 (1917).
5. C. Izawa, J. Math. Psychol. 8, 200 (1971).
6. E. Tulving, J. Verb. Learn. Verb. Behav. 6, 175 (1967).
7. J. A. McGeoch, The Psychology of Human Learning
(Longmans, Green, New York, 1942).
8. N. J. Slamecka, B. McElree, J. Exp. Psychol. Learn. Mem.
Cogn. 9, 384 (1983).
9. B. J. Underwood, J. Verb. Learn. Verb. Behav. 3, 112
(1964).
10. W. F. Battig, Psychon. Sci. Monogr. 1 (suppl.), 1 (1965).
11. J. Metcalfe, N. Kornell, J. Exp. Psychol. Gen. 132, 530
(2003).
12. K. W. Thiede, J. Dunlosky, J. Exp. Psychol. Learn. Mem.
Cognit. 25, 1024 (1999).
13. S. Frank, The Everything Study Book (Adams, Avon, MA,
1996).
14. Materials and methods are available as supporting
material on Science Online.
15. J. D. Karpicke, H. L. Roediger, J. Mem. Lang. 57, 151
(2007).
16. H. L. Roediger, J. D. Karpicke, Perspect. Psychol. Sci. 1,
181 (2006).
17. H. L. Roediger, J. D. Karpicke, Psychol. Sci. 17, 249
(2006).
18. N. Kornell, R. A. Bjork, Psychon. Bull. Rev. 14, 219 (2007).
19. J. Dunlosky, K. Rawson, S. McDonald, in Applied
Metacognition, T. Perfect, B. Schwartz, Eds. (Cambridge
Univ. Press, Cambridge, 2002), pp. 68–92.
20. J. D. Karpicke, thesis, Washington University, St. Louis,
MO (2007).
21. We thank J. S. Nairne for helpful comments on the
manuscript. This research was supported by a
Collaborative Activity Grant of the James S. McDonnell
Foundation to the second author.
Supporting Online Material
www.sciencemag.org/cgi/content/full/319/5865/966/DC1
Materials and Methods
Table S1
References
31 October 2007; accepted 12 December 2007
10.1126/science.1152408
968
Translation - Portuguese A Importância Crucial do Resgate da Informação
para o Processo de Aprendizagem
Jeffrey D. Karpicke 2* e Henry L. Roediger III2
Em geral, quando um aluno é capaz de responder corretamente a uma pergunta, considera-se concluído o processo de aprendizagem. Na nossa pesquisa, alunos em uma determinada situação aprenderam as palavras do vocabulário de uma língua estrangeira conforme o paradigma padrão de experiências repetitivas de estudo e teste. Em outras três situações, depois que o aluno respondeu corretamente à pergunta de vocabulário, esse vocábulo fora repetidamente estudado, mas não incluído nos testes subseqüentes; repetidamente testado, mas não incluído nos estudos subseqüentes, ou excluído tanto dos estudos como dos testes. O estudo repetitivo após a consolidação da aprendizagem não surtiu efeito quando o aluno foi solicitado a resgatar a mesma informação após determinado tempo, mas a aplicação repetitiva de testes produziu um resultado bastante positivo. Além disso, o prognóstico dos alunos com relação ao seu desempenho divergiu do resultado obtido. As conclusões demonstram o papel crucial da prática do resgate da informação para a consolidação da aprendizagem e mostram que até os alunos das universidades desconhecem o fato.
Desde o trabalho pioneiro de Ebbinghaus (1), os cientistas, de modo geral, têm estudado o aprendizado humano e a memória, submetendo as pessoas por um determinado período às informações que se deseja ensinar e testando-as com a aplicação de provas em outro momento, a fim de observar o que foi aprendido. Quando este procedimento é feito muitas vezes, produz-se uma curva de aprendizado exponencial. A suposição padrão em quase toda a pesquisa é a de que o aprendizado ocorre enquanto a pessoa está estudando e codificando o material. Portanto, a continuidade dos estudos deveria aumentar o aprendizado. No entanto, o processo de resgate de informações enquanto se realiza uma prova, é considerado, por vezes, um evento relativamente neutro, que mede o aprendizado ocorrido durante o estudo, mas que não consolida, por si só, a aprendizagem. Ao longo dos anos, pesquisadores já argumentaram que a aprendizagem pode ocorrer durante o período de provas (2-6). Contudo, as suposições de que o estudo contínuo promove o aprendizado e de que o período de provas representa um evento neutro que simplesmente dimensiona a aprendizagem, ainda permeiam as pesquisas atuais sobre memória, bem como as práticas educacionais contemporâneas, onde as provas também são consideradas meras avaliações do conhecimento.
O objetivo da nossa pesquisa era examinar essas suposições de longa data, no tocante ao estudo repetitivo e avaliação repetitiva da aprendizagem. Particularmente, depois que a informação é resgatada pela memória, quais são os efeitos da codificação repetitiva (durante o período de estudo), ou do resgate repetitivo (durante o período de testes) sobre a aprendizagem e a retenção da informação a longo prazo, avaliados uma semana mais tarde? O segundo objetivo desta pesquisa era examinar a avaliação que os alunos faziam do próprio aprendizado. Depois de aprenderem a respeito de determinados assuntos por meio de estudo repetitivo ou testes repetitivos, pedimos para que eles dimensionassem quanto desse aprendizado seria resgatado futuramente, durante a realização da prova final uma semana mais tarde. A nossa pergunta era: será que os alunos tinham consciência do próprio grau de aprendizagem?
O propósito final da experiência era abordar um outro tema venerável referente à aprendizagem e à memória, e que trata da relação entre a rapidez com a qual se aprende algo e o tempo que se leva para esquecê-lo. Será que o ritmo de aprendizagem guarda relação com a retenção do material a longo prazo, e, em caso afirmativo, seria essa uma relação positiva (processos que promovem uma aprendizagem rápida também retardam o esquecimento e geram uma boa retenção) ou negativa (uma aprendizagem rápida pode ser efêmera e induzir a um rápido esquecimento)? Pesquisas anteriores concluíram que a aprendizagem rápida diminuía a velocidade do processo de esquecimento e melhorava a retenção a longo prazo (7), mas, posteriormente, os críticos argumentaram que, quando o processo de esquecimento é avaliado de forma mais adequada do que o fora nos estudos anteriores, não existem diferenças nas velocidades de esquecimento, seja o aprendizado rápido ou moroso (8, 9). De qualquer forma, situações que exibem curvas de aprendizado equivalentes deveriam produzir graus de retenção equivalentes após determinado tempo (9).
Utilizando pares de palavras do vocabulário de uma língua estrangeira, estudamos as contribuições do estudo repetitivo e da avaliação repetitiva para o processo de aprendizagem, comparando uma situação tradicional de aprendizagem com três situações de exclusão do tema a ser trabalhado. O método tradicional de mensurar a aprendizagem, utilizado desde a pesquisa de Ebbinghaus (1), envolve a apresentação de informações sobre determinado assunto durante um período de estudo, seguida de um teste no período de avaliação; depois, a apresentação do mesmo assunto novamente, a realização da prova outra vez, e assim por diante. As condições de aprendizagem que contemplavam a exclusão do tema no presente experimento diferiam das condições tradicionais do processo de aprendizagem, no sentido de que uma vez que um vocábulo tivesse sido resgatado com êxito durante uma prova, ou ele era (i) excluído dos períodos de estudo, mas ainda testado em determinada situação, (ii) excluído dos períodos de teste, mas ainda repetidamente estudado em uma segunda situação, ou (iii) excluído completamente tanto dos períodos de estudo como dos de teste em uma terceira situação (Tabela 1).
Surpreendentemente, as situações tradicionais de aprendizagem e as que contemplavam a exclusão do tema, raramente são comparadas durante uma pesquisa que trata da memória, apesar de sua importância crucial para as teorias de aprendizagem e sua relevância prática para os alunos (utilizando o recurso visual de cartolinas com a grafia dos vocábulos e outros métodos de estudo). As situações de exclusão foram desenvolvidas, originalmente, com o intuito de remediar problemas metodológicos que surgiam a partir da prática repetitiva na situação tradicional de aprendizagem (10), mas também podem ser utilizadas para se estudar o efeito da prática repetitiva por si só, como fizemos no presente experimento. Se o aprendizado ocorre exclusivamente durante os períodos de estudo, e se as provas representam uma avaliação neutra, então experiências adicionais que tratam dos estudos deveriam gerar um efeito positivo considerável no processo de aprendizagem, ao passo que experiências adicionais que tratam de formas de avaliação não deveriam surtir efeito algum no processo de aprendizagem. Além disso, se o estudo repetitivo ou o sistema de avaliação após a consolidação do aprendizado de um vocábulo realmente beneficia a retenção a longo prazo, isso contradiz o senso comum de que os estudantes deveriam abandonar os assuntos aprendidos como resultado da prática sucessiva, a fim de direcionar os seus esforços no sentido de assimilar os assuntos que ainda não aprenderam. O abandono de fatos aprendidos pode criar a mesma retenção a longo prazo, como ocorre nas condições tradicionais de aprendizado, mas em menos tempo, ou pode melhorar a aprendizagem, ao permitir que os alunos foquem nos assuntos que ainda não tiveram oportunidade de resgatar. Esta estratégia é implicitamente endossada pelas teorias contemporâneas de tempo dedicado ao estudo (11, 12) e é explicitamente incentivada em muitos guias de estudo populares (13).
Tabela 1. Situações do experimento, número médio de experiências dentro de cada período de estudo ou teste e número total de experiências na fase de aprendizagem em cada situação. SN indica que somente os pares de palavras do vocabulário que não foram recuperados pela memória durante o período anterior de avaliação foram estudados no período corrente de estudo. TN indica que somente os pares não recuperados pela memória durante o período anterior de avaliação foram testados durante o período corrente de avaliação. Os alunos em todas as situações realizaram uma “distracter task” durante 30 segundos, que envolvia a verificação de problemas de multiplicação após cada período de estudo.
Período de Estudo (S) ou teste (T) e número de experiências por período
Situação 1 2 3 4 5 6 7 8 Número total de experiências
ST S
40 T
40 S
40 T
40 S
40 T
40 S
40 T
40
320
SNT S
40 T
40 SN
26,8 T
40 SN
8,0 T
40 SN
2,0 T
40
236,8
STN S
40 T
40 S
40 TN
27,9 S
40 TN
11,8 S
40 TN
3,3
243,0
SNTN S
40 T
40 SN
27,1 TN
27,1 SN
8,8 TN
8,8 SN
1,5 TN
1,5
154,8
1. Departamento de Ciências Psicológicas, Purdue University, West Lafayette, IN 47907, USA. 2. Departamento de Psicologia, Washington University em St. Louis, St. Louis, MO 63130, USA.
*Para quem a correspondência deve ser endereçada. E-mail: [email protected]
966 15 DE FEVEREIRO DE 2008 VOL 319 SCIENCE www.sciencemag.org
Durante o experimento, alunos de um curso superior aprenderam uma lista de pares de palavras do vocabulário de uma língua estrangeira e os manipularam, quer os pares permanecessem na lista (e fossem repetidamente praticados), quer fossem excluídos depois da primeira vez que foram rememorados, como mostrado na Tabela 1. Todos os alunos começaram estudando uma lista de 40 pares de palavras em suaíli-inglês (por exemplo, mashua-boat) durante um período de estudo e depois realizaram testes utilizando toda a lista durante o período de teste (por exemplo, mashua-?). As circunstâncias eram as mesmas durante os períodos iniciais de estudo e teste. Quando um par de palavras era lembrado corretamente, recebia um tratamento diferenciado nas quatro situações. Na tradicional, a lista inteira era estudada e avaliada durante cada período de estudo e teste (simbolizado por ST). Na segunda situação, depois que um par era rememorado, passava a ser excluído de estudos futuros, porém testado em cada período de teste subseqüente (simbolizado por SNT, onde SN indica que somente os pares que não foram lembrados corretamente foram estudados novamente). Na terceira situação, os pares lembrados corretamente foram excluídos dos testes futuros, mas estudados em cada período de estudo subseqüente (simbolizado por STN, onde TN indica que somente os pares não rememorados eram mantidos na lista durante os períodos de testes). Em uma quarta situação, os pares rememorados eram totalmente excluídos tanto dos períodos de estudo como de teste (SNTN). A situação final representa o que o senso comum e muitos educadores instruem os estudantes a fazer: estudar um tópico até que seja aprendido (i.e., passível de rememoração) e, em seguida, excluí-lo da prática de estudo futura.
Ao final da etapa de aprendizagem, os alunos nas quatro situações foram solicitados a fornecer um prognóstico de quantos pares de palavras, dos 40 que tinham sido estudados, eles seriam capazes de lembrar durante um teste final dali uma semana. Em seguida, foram dispensados e retornaram para a prova final uma semana depois. As quatro situações de aprendizagem exerceram um efeito crucial na velocidade com a qual as palavras do vocabulário foram aprendidas, no prognóstico dos alunos sobre seu desempenho futuro, e na retenção a longo prazo avaliada depois de passada uma semana (14).
A figura 1 mostra a proporção cumulativa de pares de palavras rememorados durante a fase de aprendizado, que gera um crédito na primeira vez que um aluno relembra um par de palavras. Também analisamos curvas de aprendizagem tradicionais (a proporção da lista total rememorada em cada período de teste) para as duas condições que exigiam a lembrança da lista inteira (ST e SNT), e os resultados, pelos dois métodos de mensuração, foram idênticos. Assim, limitamos nosso estudo às curvas de aprendizado cumulativas, onde as quatro situações podem ser comparadas. A figura 1 mostra que o desempenho foi quase perfeito ao final da aprendizagem (i.e., todas as 40 palavras em inglês estudadas foram rememoradas por quase todos os indivíduos). E o mais importante: não houve diferenças nas curvas de aprendizagem das quatro situações.
Dada a semelhança no desempenho dos alunos no processo de aquisição da informação, não surpreende o fato de que os alunos nas quatro situações não divergiram na sua estimativa coletiva do nível de aprendizagem (os seus prognósticos de desempenho futuro). Em média, os alunos em todas as situações previram que se lembrariam de cerca de 50% dos pares após uma semana. Este foi o número médio de palavras que esperavam rememorar em cada situação: ST = 20,8, SNT = 20,4, STN = 22,0, e SNTN = 20,3. Uma análise da variação não revelou diferenças significativas entre as situações (F
More
Less
Translation education
Bachelor's degree - USP - University of São Paulo - BA in English and German
Experience
Years of experience: 30. Registered at ProZ.com: Sep 2010.
English to Portuguese (USP) English to Portuguese (American Translators Association) Portuguese to English (USP) English to Portuguese (Sworn Translator & Interpreter) Portuguese to English (Sworn Translator & Interpreter)